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The calculation of the syndrome—the first step performed by all decoders of
linear codes—can require a number of logical operations which grows faster
than the square of block length. It is shown that the complexity of syndrome
calculation can be reduced for many linear codes by a factor of log of the code
block length and that Hamming codes can be decoded with combinational ma-
chines having a number of logic elements which is linear in block length.

I. Introduction

It has been suggested that error-correcting coding be
used to improve the reliability of Ground Communi-
cations Facility (GCF) data transfer. However, if such
coding is to be used, the problem of real-time decoding
must first be dealt with; this problem will be especially
acute in the 50-kbits/s wideband mode. This note shows
how decoding complexity can be decreased for many
important coding schemes.

Every linear (parity-check) code has a parity check
matrix H associated with it. If the code words x,, ..., xy
are N-tuples over GF(q), then H is an N X (N — K)
matrix over GF(q) where K is the number of information
digits needed to represent the code word and N — K is
the number of dependent digits in a code word. Also,
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M = q* and every code word satisfies the equation

XzHZO

Let y be the received sequence when x; is transmitted
and let e = y — x; be the error sequence associated with
x;. The syndrome s associated with y and e is

s=yH=eH
and s is a compact reflection of the channel errors.

In this note we show that the calculation of s can be
reduced for many codes by making use of the structure
of H. We begin with an examination of Hamming codes.

Il. Hamming Codes

The parity-check matrix H,, of the Hamming code
(Ref. 1) is N =2" — 1 by m dimensional binary matrix
which contains all binary m-tuples as rows except for the
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zero m-tuple. It is easily shown that each column of H,,
contains 271 ones, so that the straightforward calculation
of each digit of s would require 2™ — 1 modulo-2 sums
of pairs for a total of m(2™* — 1) additions. This number
grows as N log, N. We shall show that this number can
be reduced to linear in N.

Theorem 1

The calculation of syndromes for a Hamming code of
length N = 2" — 1 can be accomplished with 2[2™ —
{m + 1)] mod-2 additions, and at least 2" — 2 additions
are required.

Proof

There is no loss of generality in assuming that the
rows of H,, {which are m-tuples) are listed in order of
increasing integers which they represent in dyadic form.
Form Hi from H, by adding the zero m-tuple as the
first row. For example,

000 -O 0 1’7
001 010
0 1 0 011
1
H*= (1) 00 H,=]100
101
101
110
110
111 111
Note that H% can be formed from H¥ as indicated be-
low:
-0 -
0 Hx
. om
H%* =10
1
. Hj;t 2m
...l o

The number of modulo-2 additions to multiply H,,.,
on the left, P,,,,, is the number to multiply with H¥ .
But, this is twice P, plus the number to add each half of
columns 2 through m + 1 of H#% namely, m plus the
number to multiply by the first column. The recursive

construction of H*  shows that the bottom quarter of

Mm4+1
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the second column of H% ., namely, the lower half of the
first column of H*, contains ones, so that the partial sum
of the 2"/2 last components of y computed for the sec-
ond column of H#% , can be used to compute its first
column. Using partial sums computed for the third and
later columns, the first column can be computed with an

additional m additions.
Then,
Pp.1=2P, + 2m

and it is easily shown that P, = 2. This is a linear dif-
ference equation with homogeneous solution ¢2” and
particular solution —2(m + 1). Therefore,

P, =c2™ — 2(m + 1)
and ¢ = 2 for P, = 2. Or
P, = 2(2’” — (m + 1)).

To show that at least 2" — 1 additions are necessary
to compute s, we observe that in computing (y,, ¥, . . .,
Y )Hy the sums yo, 4o + Yo, Ypo,, + oo+ yus s
Y1 1+ .o+ Yy, must be formed and that these are
sums of overlapping variables. Also, each sum except
the last is added to other partial sums. Therefore, the
number of additions is at least

m-1
Z Qi-1 4-9m-1 __ 1 = 9m . 9
i=1

This completes the proof of the theorem.

This reduction by a factor of log, (N + 1) in the com-
plexity of syndrome calculations can be carried over to
some BCH codes, as shown next.

lll. Binary BCH Codes

A t-error-correcting BCH code (Ref. 1) over GF(2)
has a parity check matrix

1 1 ... 1
a ol ath
H=| @ (@) (e
o1 (aﬂ)N—l (az t—l)wq

where 1 and o are elements of GF(2") and N is the
multiplicative order of a.
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Theorem 2

The syndrome s of a binary, t-error-correcting BCH
code can be computed using 2¢(2" — (m + 1)) mod-2
additions when o is primitive and the multiplicative

orders of a?, o ..., «?*~! are all relatively prime to N =
2m — 1, the block length of the code.

Proof

Each element of GF(2") can be represented by a
binary m-tuple. Under the conditions of the theorem,
each element o, o’,... «* "' is primitive in GF(2") and
each column contains all the nonzero m-tuples. Invoking
Theorem 1, the result follows.

Under the conditions of the theorem the number of
mod-2 additions to form H directly, without using partial
sums for various columns, would be m#(2™* — 1), Thus,
a savings of a factor of about m/4 can be achieved.

When the conditions of Theorem 2 are not met, the
bound of Theorem 2 may not apply. The interested
reader can satisfy himself that 47 additions will be
needed, using techniques of this note, for the (15,7) BCH
code while the bound of Theorem 2 would predict 44.
In this case, a® is not primitive in GF(2%).

IV. On Decoding Hamming Codes

Hamming codes can be decoded with a logic circuit
containing a number of logic elements proportional to
the block length N, as is now shown. The Hamming
codes correct all single errors, and decoding is done by
changing the ith received digit if s is equal to the ith
row of H.

The circuit which generates correction signals from
a syndrome vector computes all but one of the terms of
the form s;1+s%2 +...+s'm where * denotes AND, (c,, ¢,
“**,Cn) is a binary m-tuple, and s!=s,, s?=3;, the
INVERSE of s;. The only term not computed is 8,+ ... 8,,.
These terms are known as minterms, and it can be shown
by induction that they can all be realized using 2(2" — 1)

logic elements of the type AND, OR, INVERSE (Ref. 2).

Thus, with a total number of logic elements propor-
tional to N, syndromes can be computed and correction
signals generated.

V. Conclusion

The reductions in decoder complexity demonstrated
in this note might also be achieved for many other codes.
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